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Abstract. Following a prior analysis of measured pp elastic differential cross-sections, the impact parame-
ter representation in terms of profile functions is calculated from two different parametrizations of single
diffractive dissociation data. The derivative of this quantity, with respect to the collision energy squared
s, measures the growth rate of the reaction’s blackness. Its distribution in impact parameter space allows
detailed insight into the growth pattern of the total diffractive cross-section and the approaching unitar-
ity limit. Comparing the results with the elastic case, the different mechanisms of unitarization of two
parametrizations are discussed.

PACS. 12.40.Nn Regge theory, duality, absorptive/optical models – 13.85.-t Hadron-induced high- and
super-high-energy interactions (energy > 10 GeV)

1 Introduction

It is long known that high-energy total hadronic cross-
sections grow with rising center-of-mass energy

√
s ac-

cording to a power law (s/s0)
ε and total diffractive cross-

sections as (s/s0)2ε. Empirically, this behaviour holds for
the total single diffractive cross-section up to energies
of

√
s ∼ 30 GeV, for the total cross-section even up to

∼ 1.8 TeV and is successfully described within the frame-
work of Regge theory by the exchange of various Regge
trajectories and the pomeron. However, unitarity requires
that this power law turns over at some point to agree with
the Martin-Froissard bound which demands at most log-
arithmic growth σ ≤ σ0 ln2

(
s
s0

)
. A priori, the point at

which this turnover takes place is not determined, and it
has been a vital issue for a long time.

In several measurements, significant deviations from
the power law given by dominant pomeron exchange in-
dicating the presence of unitarity limits have been ob-
served in the case of the total single diffractive cross-
section (e.g., [1–5]).

There is, however, a quantity which is expected to indi-
cate signals of the unitarity limit long before they actually
show up significantly in the total cross-section. This quan-
tity is the profile function, an object which is introduced in
high-energy diffractive reactions to describe the shape of
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the collision partners in the plane transverse to the beam
axis. Assuming that the longitudinal momentum transfer
is negligible, it is given by:

Γ (b) =
1

2πik

∫
d2kt exp[iktb]f(kt). (1)

Unitarity constrains the profile function to satisfy

2ReΓ (b) − Γ 2(b) < 1, (2)

an expression which reduces to Γ (b) < 1 in the limit of
vanishing real part of the scattering amplitude (the real
part of the profile function corresponds to the imaginary
part of the scattering amplitude).

Whereas in the total cross-section an average over all
impact parameters is taken, the profile function is directly
sensitive to central collisions in which the unitarity limit
is expected to be observed first. Unfortunately, since the
magnitude of the profile function is strongly influenced by
uncertainties in the absolute normalization of the data,
it is not the profile function itself but its derivative with
respect to s which yields the most interesting observable.

In the following, this property of the profile function
will be exploited. First, the analysis of elastic pp data will
be recalled and used to discuss the requirements necessary
to obtain meaningful results. After that, it is argued that
the cross-section pp → pX (where X can be any state ex-
cluding the proton), is constrained by unitarity in just the



252 The European Physical Journal A

same way as the elastic. Due to limitations of data statis-
tics, the attention is then focussed on parametrizations,
which agree with the data where available but use two
different prescriptions to unitarize the total cross-section.
The impact parameter analysis is used to test these two
different prescriptions.

2 The ISR analysis

In [6], pp elastic scattering data taken at the ISR by var-
ious groups have been compiled in order to yield several
data sets of dσ/dt for five different s. The scattering am-
plitude was now reconstructed assuming that Im f(kt) �
Re f(kt) ≡ R(kt) using

f(kt) =
√

dσ

dkt
− R2(kt) , (3)

with the small real part taken from dispersion analysis.
The profile function was then calculated using eq. (1).
The growth of the profile with increasing c.m. energy can
then be found using

∆Γ (b) =
dΓ (b)
d ln s

∣∣∣∣
s=s0

, (4)

where the derivative are evaluated using averaged differ-
ences of the profiles at each value of b, therefore s0 is
somewhere between s = 549 GeV2 and s = 3906 GeV2.
The actual value of s0 cannot be determined in this way,
but it is not expected that the result depends strongly on
s0, it rather reflects a gross behaviour of the cross-section.
In [6], not the profile function itself is analyzed in this way,
but rather the inelastic overlap integral which is defined as

Gin(b) = 2ReΓ (b) − |Γ (b)|2 , (5)

which exhibits the same gross features of the growth speed
at various impact parameters as the profile function. The
result of this analysis is shown in fig. 1.

The most prominent feature is the drop of the black-
ness growth speed at the center (b = 0) which is, for very
central collisions, even compatible with zero. This seems
to indicate that the corresponding profile functions are al-
ready approaching the unitarity limit and therefore cannot
grow arbitrarily in the center. The main contribution to
the growth of the total cross-section comes from a region
of ∼ 1 fm which lies at the periphery of the proton.

The ingredients which are necessary for this analysis
are data with: a) high statistics in t in order to obtain an
accurate profile function, b) different s in order to obtain
a reliable derivative (the low statistics in s is responsi-
ble for the large error bars in fig. 1) and c) knowledge of
the real part of the scattering amplitude. In order to test
the conditions necessary for the observation of the central
slowdown which is interpreted as a sign for the unitarity
limit, the analysis was redone using the data sets pub-
lished in [7], neglecting the real part of the amplitude and
using variations of the upper bound of the Fourier integral

Fig. 1. The growth speed of the inelastic overlap integral
Gin(b) as a function of the impact parameter as obtained in [6],
compared with the result of the simplified analysis in which
the integration over |t| is carried over up to |t| = 1.0 GeV2 (see
text).
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Fig. 2. The growth speed of the cross-section as a function of
the impact parameter for different upper bounds in the Fourier
integral (error bars have been suppressed).

in eq. (1), in order to test which range in t an experiment
should minimally cover in order to observe this effect. The
result for the inelastic overlap integral is compared to the
analysis in [6] in fig. 1 and the result for the growth speed
of the profile function Γ is shown in fig. 2.

It is obvious that the main signal, namely the drop
of ∆Γ for small b, is still observable in this simplified
analysis in both ∆Gin(b) and ∆Γ (b), even if we lower the
upper bound of the integration down to 0.64 GeV2. This
gives confidence that the application of the same simplified
analysis to the case of single diffractive dissociation may
also work and defines the range in t which should be known
experimentally in order to observe this effect as |tmax| ∼
0.6 GeV2.
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3 Single diffraction

Unfortunately, the data situation for the single-diffraction
process pp → pX, where the final state has a proton and a
kinematically separated hadronic state excluding the pro-
ton, is not satisfactory. Data have been taken at ISR for
several values of s [4]; if the dependence on the mass of
the diffractively produced state X is integrated out, only
about 10 data points per set are available to describe dσ

dt ,
starting from t ∼ 0.2 GeV2. Since the low-t region where
the cross-section is large gives a dominant contribution in
the Fourier integral (1) and the resolution in t is not high,
a sufficiently accurate analysis based on the measured data
alone is not possible. The same is true for the more recent
data obtained by UA4 [2,3], UA8 [1] and CDF [5] for
vastly different s. However, existing parameterizations of
the data allow to create “virtual” data sets. In the im-
pact parameter analysis of these virtual data sets, the
unitarization prescription of the parameterizations can be
tested.

An adequate description of the shape of the single
diffractive differential cross-section is given by Regge the-
ory, although the normalization is suppressed at high en-
ergies relative to the Regge prediction (see [8]). Here the
differential cross-section is written as (see, e.g. [9]):

d2σ

dtdM2
X

=
∑
i,j,k

βik(0)βil(t)βjl(t)gijk(t)
16πs

×
(

s

M2
X

)αi(t)+αj(t)

(M2
X)αk(0) , (6)

where i, j, k are all possible combinations of pomeron and
other Regge trajectories, and βik and gijk the correspond-
ing vertex functions. Assuming factorization in the sense
that the process can be regarded in two steps, where, in
the first step, the proton emits a pomeron which sub-
sequently, in the second step, hits the other proton and
forms a hadronic state X, the formula can be cast into
the form

d2σ

dtdξ
= FP/p(t, ξ) · σtot

Pp(s′) = [K|F1(t)|2ξ1−2·αP(t)]

×σ0[(ξs)αP (0)−1] + reggeon contributions. (7)

Here, ξ is the momentum fraction that the pomeron car-
ries away from its parent proton, s′ ≡ M2

X ≈ ξs, αP(t) is
the pomeron trajectory, F1(t) is the standard Donnachie-
Landshoff form factor [10] and K is a normalization factor
for the pomeron flux. Based on this expression, two differ-
ent parameterizations have been proposed by Erhan and
Schlein [11] and by Goulianos [12].

It is neither the aim of the present paper to dwell on
details of each parameterization, such as background ef-
fects and possible modifications of the Regge trajectory,
nor to compare their ability to reproduce the data. The
focus is rather on a test of the different prescriptions used
for unitarization of the total cross-sections which can be
calculated from the two parameterizations.

In the parameterization by Erhan and Schlein, unita-
rization is done via a modification of the pomeron trajec-
tory (which is usually given as αP(t) = α0 + α′ · t). Here
the trajectory acquires a term which is quadratic in t (and
unimportant for the purpose of the present analysis since
it affects only the high t range with t > 1 GeV2 to which
this analysis is insensitive) and the parameters α0, α

′ and
α′′ (here α′′ is the coefficient of the new quadratic term
in the pomeron trajectory) are modified as a function of
s according to

α0(s) = α0(s0) + A · ln
(

s

s0

)
,

α′(s) = α′(s0) + A′ · ln
(

s

s0

)
, and

α′′(s) = α′′(s0) + A′′ · ln
(

s

s0

)
. (8)

For a negative value of A this causes deviations from the
power law and allows to fit the total cross-section data.

On the other hand, in the parameterization by Gou-
lianos a fundamentally different approach is used. Here,
it is assumed as a working hypothesis that the pomeron
flux FP/p(t, ξ) from the parent proton cannot exceed unity.
Therefore the factor K in eq. (7) is adjusted in such a way
as to meet this condition. This results in a drastic change
in the growth speed at some critical s beyond which the
growth of the total cross-section is slowed down signifi-
cantly.

It is evident that these two mechanisms to introduce
unitarity into eq. (7) are fundamentally different. Both
of them are able to meet the unitarity condition imposed
on the total cross-section as seen from the present data.
The critical question, which now arises, is the following:
Since elastic scattering and single diffraction are both con-
strained by the same unitarity condition that (assuming
negligible real part of the scattering amplitude) the prob-
ability for any interaction must be smaller than one at
some given impact parameter, the same behaviour in the
growth speed ∆Γ (b) should be seen, namely a slowing
down of central growth as compared to peripheral modes.

The actual analysis is done in a way similar to the one
done in the elastic case. Data sets are created from the pa-
rameterizations at values of s in the range of the ISR data,
by integrating eq. (7) over ξ for fixed t. The lower limit
of the ξ integration is given by s′min/s, where s′min corre-
sponds to the lowest excited state of the proton and the
upper limit is choosen in accordance with the experimen-
tal definition of the published dσ

dt data sets as ξmax = 0.05.
Both parametrizations have been used exactly as they ap-
pear in [11,12], i.e. including reggeon contributions. These
data sets are then treated as in the elastic case; the scat-
tering amplitude is reconstructed assuming a vanishing
real part and the profile function is calculated according
to eq. (1). Figure 3 shows the resulting profile functions
and fig. 4 shows the result of the growth speed analysis.

It is evident from the figure that a unitarization pre-
scription such as the flux renormalization by Goulianos
leads to a picture which is in better agreement with the
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Fig. 3. Profile functions obtained by the parameterizations by
Erhan, Schlein and by the one of Goulianos for different values
of s.

0

0.02

0.04

0.06

0 0.5 1 1.5 2 2.5 3 3.5

Erhan, Schlein
Goulianos

ISR elastic analysis

b [fm]

(b
)

∆Γ

Fig. 4. Impact parameter analysis of the growth speed ∆Γ
based on the parameterization by Erhan and Schlein and the
one by Goulianos in the ISR energy range (534 GeV2 ≤ s ≤
3906 GeV2). Shown for comparison is the result of the analysis
of the elastic data as plotted in fig. 2.

one based on the elastic data. In that (dashed) curve, the
dip for central collisions is at least indicated, whereas the
other parameterization (by Erhan and Schlein) does not
show any sign of a slower growth of the central blackness
—quite the opposite is seen, in apparent contradiction to
the (dotted) elastic result.

The parameterizations can also be tested in the much
higher energy range experimentally accessed by UA4 and
UA8. The same analysis as above was made in the range
540GeV <

√
s < 630GeV and the result is shown in fig. 5.

Here, the main features of the ISR energy result appear
again, although somewhat more pronounced. This can also
be seen in fig. 3, where the profile functions of both param-
eterizations are similar at s = 550 GeV, whereas the one
by Erhan and Schlein exhibits a larger central growth than
the one by Goulianos when compared at

√
s = 630 GeV.

This trend is confirmed looking at the
√

s = 1800 GeV
data obtained by CDF.
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Fig. 5. Impact parameter analysis of the growth speed ∆Γ
based on the parameterization by Erhan and Schlein and the
one by Goulianos in the energy range of the UA4 and UA8 [1–3]
(540 GeV <

√
s < 630GeV) and the CDF measurements [5]

(
√

s = 1800 GeV).

Let us conclude this section with a few critial re-
marks on the analysis and a summary of basic assump-
tions. First of all, the expression for the profile function,
eq. (1), is valid at asymptotic energies only. At finite en-
ergies, a mathematically correct treatment has been de-
veloped (see, e.g. [13]) and, in principle, should be used.
Next, throughout the analysis, the real part of the scat-
tering amplitude has been neglected. This appears to be
justified by looking at fig. 1, where this approximation
amounts only to a small difference for ISR energies. Simi-
lar assumptions are used in the standard analysis of high-
energy elastic hadron scattering. The last issue concerns
the form of the parametrizations used. Here, only one of
the diagrams shown by Ross and Yam [14] has been used
in both cases discussed in this paper. On the other hand,
both parametrizations are able to account for the data
where available. Clearly, the shape of the profile functions
resulting from the present analysis is central, in spite of
the peripheral nature of diffraction. However, the conclu-
sions concerning the unitarization of the parametrizations
do not depend on the last two issues.

4 Summary

We have shown that the impact parameter analysis is a
useful tool to investigate how effects caused by unitarity
limits are distributed across the impact parameter space.
The strongest manifestations of such effects should be
found for central collision where the blackness is largest,
resulting in a slowing down of the growth speed of the
profile for small impact parameters. This method cannot
only be used for measured data but also in order to anal-
yse unitarization prescriptions in empirical parameteriza-
tions. The reaction pp → pX has been considered here to
demonstrate that unitarization by flux renormalization is
closer to what one would expect, guided by the analysis
of the elastic scattering data, than unitarization by the
introduction of an s-dependent pomeron intercept.
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